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Abstract. Communication subsystems are used in high-performance
parallel computing systems to abstract the lower network layer. By us-
ing a communication subsystem, an upper middleware library or run-
time system can be more easily ported to different interconnects. By
abstracting the network layer, however, the designer typically makes the
communication subsystem more specialized for that particular middle-
ware library, making it ineffective for supporting middleware for other
programming models. In previous work we analyzed the requirements of
various programming-model middleware and the communication subsys-
tems that support such requirements. We found that although there are
no mutually exclusive requirements, none of the existing communication
subsystems can efficiently support the programming model middleware
we considered. In this paper, we describe our design of a common com-
munication subsystem, called CCS, that can efficiently support various
programming model middleware.

1 Introduction

Communication subsystems are used in high-performance parallel computing
systems to abstract the lower network layer. By using a communication sub-
system, an upper middleware library or runtime system can be ported more
easily to different interconnects. By abstracting the network layer, however, the
designer typically makes the communication subsystem less general and more
specialized for that particular middleware library. For example, a communica-
tion subsystem for a message-passing middleware might have been optimized for
transferring data located anywhere in a process’s address space, whereas a com-
munication subsystem for a global address space (GAS) language might have
been better optimized for transferring small data objects located in a specially
allocated region of memory. Thus, the communication subsystem designed for
a GAS language cannot efficiently support the message-passing middleware be-
cause, for example, it cannot efficiently transfer data that is located on the stack
or in dynamically allocated memory.

Despite their differences, communication subsystems have many common fea-
tures, such as bootstrapping and remote memory access (RMA) operations. In
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[1] we analyzed the requirements of various programming model middleware
and the communication subsystems that support them. We found that although
there are no mutually exclusive requirements, none of the existing communica-
tion subsystems can efficiently support the programming-model middleware we
considered. In this paper, we describe our design of a common communication
subsystem, called CCS, that can efficiently support various programming-model
middleware. We specifically targeted CCS to efficiently support the requirements
of MPICH2 [2,3], the Global Arrays (GA) toolkit [4,5], and the Berkeley UPC
runtime [6,7]; however, we believe that CCS is general enough to efficiently sup-
port any message-passing, global address space, or remote-memory middleware.

The rest of this paper is organized as follows. In Section 2 we briefly describe
the critical design issues necessary to support the various programming models.
In Section 3 we present our design for a common communication subsystem. In
Section 4 we show performance results from our preliminary implementation of
CCS. In Section 5 we conclude and present future work.

2 Design Issues for Communication Subsystems

In this section, we briefly describe the important issues for designing a common
communication subsystem. These design issues are covered in more detail in
[1]. We divide the design issues into required features and desired features. A
required feature is a feature that, if lacking, would prevent the communication
subsystem from effectively supporting a particular programming model. Desired
features are features that, when implementing a programming model on top
of the communication subsystem, make the implementation simpler or more
efficient.

2.1 Required Features

Remote Memory Access Operations. RMA operations allow a process to
transfer data between its local memory and the local memory of remote process
without active participation of the remote process. RMA operations are impor-
tant for global address space and remote-memory programming models, as well
as for message-passing applications that have irregular communication patterns.

In order to allow better overlap of communication and computation, non-
blocking RMA operations should be provided. A mechanism is then needed to
check whether the operation has completed.

MPI-2 RMA support. In order to support MPI-2 [8] active-mode RMA oper-
ations, the communication subsystem must be able to perform RMA operations
between any memory location in the process’s address space. In order to support
passive-mode RMA operations, the communication subsystem need only be able
to perform RMA operations on memory that has been dynamically allocated
using a special allocation function.

GAS language and remote-memory model support. GAS language and
remote-memory model runtime systems need to be able to perform concurrent
conflicting RMA operations to the same memory region. Similarly, they require



the ability to perform local load/store operations concurrently with RMA opera-
tions, possibly to the same memory location. While the result of such conflicting
operations may be undefined, the communication subsystem must not consider
it an error to perform them. RMA operations also must be very lightweight,
since typical RMA operations in these programming models are single-word op-
erations.

Efficient Transfer of Large MPI Two-Sided Messages. MPI and other
message-passing interfaces provide two-sided message passing, where the sending
process specifies the source buffer, and the receiving process specifies the desti-
nation buffer. Typically, in message-passing middleware, large data is transferred
by using a rendezvous protocol, where one process sends the address of its buffer
to the other process, so that one process has the location of both the source
and destination buffers. Once one process has the location of both buffers, it
can use RMA operations to transfer the data. In MPI, the source and destina-
tion buffers can be located anywhere in the process’s address space. In order to
support transferring large two-sided messages in this way, the communication
subsystem must be able to perform RMA operations on any memory location in
the process’s address space.

2.2 Desired Features

Active Messages. Active messages [9] allow the sender to specify a handler
function that is executed at the receiver when the message is received. This
function can be used, for example, to match an incoming message with a pre-
posted receive in MPI or to perform an accumulate operation in Global Arrays.

In order to support multiple middleware libraries at the same time, active
messages from one middleware library must not interfere with those of another
middleware library. One solution is to ensure that each library uniquely specifies
its own handlers.

In-Order Message Delivery. In-order message delivery is a requirement for
many message-passing programming models. If the communication subsystem
provides this feature, the middleware doesn’t have to deal with reordering mes-
sages. However, in other programming models such as GAS languages, message
ordering is not required, and in some cases performance can be improved by
reordering or coalescing messages. A common communication subsystem should
be able to provide FIFO ordering when it is required, and allow messages to be
reordered otherwise.

Noncontiguous Data. Programming model instances such as MPI and Global
Arrays have operations for specifying the transfer of noncontiguous data. Fur-
thermore, modern interconnects such as InfiniBand (IBA) [10], support non-
contiguous data transfer. Hence, a common communication subsystem needs to
support the transfer of noncontiguous data in order to take advantage of such
functionality.



Table 1. Feature summary of the communication subsystems.
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ARMCI • • V, S •
GASNet • • • • •
LAPI • • • • • • V
Portals • • • • • • •
MPI-2 • • • • • V, S, B •

* V = I/O vector; S = strided; B = blockindexed

2.3 Feature Support by Current Communication Subsystems

In [1] we examined several communication subsystems and evaluated how well
each addresses the features described above. Table 1 summarizes the results.
We evaluated ARMCI [11], GASNet [12], LAPI [13], Portals [14], and MPI-
2 [8] as communication subsystems. We can see from this table that none of the
communication subsystems we studied supports all of the features necessary for
message-passing, remote-memory, and GAS language programming models.

3 Proposed Communication Subsystem

In this section we describe our design for a common communication subsystem,
called CCS, that addresses the issues identified in the previous section. The
CCS communication subsystem is based on nonblocking RMA operations, with
active messages used to provide for control and remote invocation of operations.
Active messages could be used to implement an operation to deliver the message
in message passing middleware or to perform an accumulate operation in remote
memory middleware.

3.1 Remote Memory Access Operations

CCS provides nonblocking RMA operations. It is intended that RMA operations
be implemented by using the interconnect’s native RMA operations in order to
maximize performance. If an interconnect does not natively provide all or some
of the required RMA operations, active messages can be used to implement
the missing RMA operations. For example, if an interconnect has a native Put
operation but not a Get operation, the Get can be implemented with an active
message in which the handler performs a Put operation.

CCS uses a callback mechanism to indicate the completion of RMA opera-
tions. A callback function pointer is specified by the upper layer as a parameter
to the RMA function. Then, when an RMA operation completes remotely, CCS



calls the callback function. This can be used to implement fence and global fence
operations.

Because the user-level communication libraries of most interconnects require
memory to be registered before RMA operations can be performed on that mem-
ory, CCS also requires memory registration. The upper layer is responsible for
ensuring that any dynamically allocated memory is deregistered before it is freed.
The current design is to limit the amount of memory that a process can register
to the amount that can be registered with the interconnect. A future design
is to lift this restriction. If the upper layer registers more memory with CCS
than the interconnect can register, CCS would handle deregistering and rereg-
istering memory with the interconnect as needed. A mechanism similar to the
firehose [15] mechanism used in GASNet could be employed.

Registering and deregistering memory with a network library usually involve
a system call, which makes them costly operations. In order to reduce the over-
head of registering and deregistering memory, CCS implements a registration
cache and uses lazy deregistration. CCS keeps track of which pages have already
been registered, to avoid registering pages twice. CCS also does not immediately
deregister memory when the upper layer calls the CCS deregistration function.
Instead, CCS simply decrements the usage count and deregisters pages once the
number of unused pages reaches a certain threshold. This scheme reduces the
number of network library registration and deregistration calls.

CCS RMA operations can access all of the process’s memory and have no
restrictions on concurrent access to memory. While this feature simplifies im-
plementing upper layers on CCS, it can impact performance on machines that
are not cache coherent and on interconnects that do not have byte granularity
for their RMA operations. In these cases, CCS will have to handle the RMA
operations in software taking care of cache coherence and data transfer.

3.2 Efficient Transfer of Large MPI Two-Sided Messages

CCS nonblocking RMA operations are to be used for transferring large mes-
sages. CCS RMA operations are intended to be implemented by using native
interconnect RMA operations to maximize throughput. Because the operations
are nonblocking, the communication can be overlapped with computation.

As described in the previous section, large MPI messages are typically trans-
ferred by using a rendezvous operation. In CCS, the rendezvous operation can
be performed with active messages. Once the exchange of buffer locations has
been done, the data can be transferred with RMA operations. When the RMA
operations have completed, another active message would be sent to notify the
other side of completion.

A future design is to implement a large data active message operation, which
would function similar to the LAPI active messages using the header handler.
The large data active message would be nonblocking. The sender would specify
an active message handler and a local completion handler. The active message
handler would be executed at the receiver before any data has been transferred.
The handler would specify the receive buffer and its local completion handler.
Once the data had been transferred, the completion handlers on the sender and
receiver would be called. A mechanism would be needed for the receiver to abort
or delay the operation in the active message handler if it was not ready to receive
the data yet.



3.3 Active Messages
We are including active messages in CCS because of the flexibility they provide
to upper-layer developers. In our design, active messages are intended to be
used for small message sizes, so the implementation should be optimized for low
latency.

When an active message is received and the handler is executed, the handler
gets a pointer to a temporary buffer where the received data resides. The handlers
are responsible for copying the data out of the buffer. Noncontiguous source data
will be packed contiguously into the temporary buffer. If the final data layout is
to be noncontiguous, the message handler will have to unpack the data.

Depending on the implementation, the active message handlers will be called
either asynchronously or from within another CCS function. CCS provides locks
that are appropriate to be called from within the handler and includes a mech-
anism to prevent a handler from interrupting a thread.

To allow multiple upper layer libraries to use CCS at the same time, we in-
troduce the notion of a context. Each separate upper layer library, or module,
allocates its own context. Active message handlers are registered with a par-
ticular context. When an active message handler is registered, the upper layer
provides the handler function pointer along with an ID number and the context.
The ID number must be unique within that context. When an active message is
sent, the context is specified along with the handler ID to uniquely identify the
active message handler at the remote side.

3.4 In-Order Message Delivery
In order to support the message-passing programming model, CCS guarantees
in-order delivery of active messages. However, RMA operations are not guar-
anteed to be completed in order. This approach allows CCS, or the underlying
interconnect, to reorder messages in order to improve performance.

3.5 Noncontiguous Data
CCS supports noncontiguous data in active messages and RMA operations. CCS
uses datadescs to describe the layout of noncontiguous data. Datadescs are simi-
lar to MPI datatypes and are, in fact, implemented by using the same mechanism
that MPICH2 uses for datatypes [16]. Datadescs are defined recursively like MPI
datatypes; however, datadescs do not currently store information about the na-
tive datatype (e.g., double or int) of the data. Because datadescs do not keep
track of native datatypes, datadescs CCS cannot be used on heterogeneous sys-
tems, where byte-order translation would need to be done. We will address this
situation in future work.

While datadescs are defined recursively, they need not be implemented re-
cursively. In the implementation the datadesc can be unrolled into a set of com-
ponent loops, rather than use recursive procedure calls that would affect perfor-
mance. These unrolled representations can be used to efficiently and concisely
describe common data layouts such as ARMCI strided layouts.

MPI datatypes can be implemented by using datadescs having the upper
layer keep track of the native datatypes of the data. I/O vector and strided data
layouts in LAPI and ARMCI can also be represented with datadescs. An im-
plementation optimization would be to include specialized operations to create
datadescs quickly from the commonly used I/O vector and strided representa-
tions in LAPI and ARMCI.



3.6 Summary of Proposed Communication Subsystem
Our proposed communication subsystem addresses all of the issues raised in the
previous section. Active messages can be used by GAS language and remote-
memory copy middleware for remote-memory allocation and locking operations
and by message-passing middleware for message matching. Because CCS sup-
ports multiple contexts for active messages, it can be used for hybrid program-
ming models, for example, where an application uses both MPI-2 and UPC.

CCS provides RMA operations that are compatible with MPI-2 RMA opera-
tions, as well as GAS language and remote memory copy RMA operations. CCS
has primitives that can be used to implement fence and global fence operations.
With the addition of a symmetric allocation function, GAS language and remote
memory copy RMA support can be implemented very efficiently. The CCS RMA
operations can also be used for transferring large messages in message-passing
middleware.

CCS also provides in-order message delivery for active messages but does not
force RMA operations to be in order. This feature allows active messages to be
used for MPI-2 message-passing, while allowing RMA operations to be reordered
for efficiency.

CCS supports transfer of noncontiguous data. The data layout is described
in a recursive manner but can be internally represented compactly and effi-
ciently. CCS’s datadescs are compatible with MPI-2 datatypes. Strided and IOV
data descriptions used in Global Arrays can also be efficiently represented with
datadescs.

Our design of using RMA operations with active messages was inspired by
LAPI and GASNet. But, as we showed in [1], LAPI and GASNet do not support
all of the key features necessary to efficiently support all of the programming
models we targeted. LAPI does not guarantee in-order message delivery, supports
only I/O vector style of noncontiguous data, and is not portable. GASNet does
not support MPI-2 active-mode RMA operations, the efficient transfer of large
MPI messages, in-order message delivery, or noncontiguous data.

We note that the lack of some of the features we described does not necessarily
mean that a middleware cannot be implemented over a particular communication
subsystem. In fact, MPI has been implemented over LAPI [17], UPC has been
implemented over MPI [7], and MPI-2 has been implemented over GASNet [2].
But the lack of these features makes these implementations less efficient and more
difficult. By implementing all of the key features, CCS can efficiently support all
of the programming-model middleware.

Figure 1 shows some sample code using CCS. The code sends an active
message, using CCS amrequest(), to another node with no data, but with the
pointer and length to its local buffer as parameters to the message handler. The
message handler on the receiving side calls CCS get() to get the data stored in
the buffer specified by the sender. When the Get operation completes CCS will
call the callback function get callback() specified in the call to CCS get().

4 Preliminary Performance Results

In this section we present performance results for our preliminary implementa-
tion of CCS over GM2 [18]. We performed latency and bandwidth tests on two
dual 2 GHz Xeon nodes running Linux 2.4.18 and connected with a Myrinet2000
network [19] using Myricom M3F-PCI64C-2 NICs through a 16-port switch.



void get_callback (void *arg) {
++gets_completed;

}
#define NEW_MSG_HANDLER_ID 0
void new_msg_handler (CCS_token_t token, void *buffer, unsigned buf_len,

void *remote_buf, int remote_buflen) {
int sender;
CCS_sender_rank (token, &sender);
CCS_get (sender, remote_buf, remote_buflen, CCS_DATA8, buf, buflen,

CCS_DATA8, get_callback, 0 /* callback argument */);
}
int main (int argc, char **argv) {

CCS_init();
CCS_new_context (&context);
CCS_register_handler (context, NEW_MSG_HANDLER_ID, new_msg_handler);
buf = malloc (buflen);
CCS_register_mem (buf, buflen);
CCS_barrier();
...
CCS_amrequest (context, other_node, NULL, 0, CCS_DATA_NULL,

NEW_MSG_HANDLER_ID, 2, buf, buflen);
...
CCS_finalize();

}

Fig. 1. Sample CCS code
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Figure 2 shows the latency results for CCS as well as for GASNet 1.3 and
ARMCI 1.2B. For CCS and GASNet, we performed the test using active mes-
sages. Because ARMCI supports only RMA operations, we performed the test
using Put. The results are averaged over 1,000 iterations. The 4-byte latency for
GASNet is 8.8 µs, for CCS is 9.6 µs, and for ARMCI is 10.8 µs. We see from
these numbers and Figure 2 that CCS performs better than ARMCI but not as
well as GASNet.

Figure 3 shows the bandwidth results. We used nonblocking Put operations
to perform the test. In this test, for each message size, we performed 10,000
Put operations, then waited for the operations to complete. We see that CCS
performs better than ARMCI for all message sizes and better than GASNet for
messages larger than 4 KB. For messages smaller than 4 KB, CCS performs only
slightly worse than GASNet. The maximum bandwidth for CCS was 244 MBps,
for GASNet was 242 MBps, and for ARMCI was 238 MBps.



The performance of CCS is comparable to the other communication sub-
systems. The additional functionality of CCS does not have a large impact on
performance. We have not yet tuned the CCS source code for performance and
expect that that with some performance tuning, we can further improve the
performance of CCS.

We note that ARMCI over GM is implemented by using a server thread on
each node. In ARMCI, RMA operations from remote processes are performed by
the server thread. While using a server thread may affect performance compared
to CCS and GASNet, it does allow RMA operation to complete asynchronously,
independent of what the application thread is doing. We intend to evaluate such
functionality for CCS.

5 Discussion and Future Work

In this paper we have presented our design for a common communication sub-
system, CCS. CCS is designed to support the middleware libraries and runtime
systems of various programming models efficiently by taking advantage of the
high-performance features of modern interconnects. We evaluated a preliminary
implementation of CCS and found the performance to be comparable to that of
ARMCI and GASNet.

In the future, we intend to address thread safety, RMA Accumulate oper-
ations, and collective communication operations. We also intend to implement
atomic remote memory operations, such as compare-and-swap and fetch-and-
add, as well as more complex operations like an indexed Put, where the address
of a Put operation is specified by a pointer at the destination process, and the
pointer is incremented after the Put completes. Such operations can be used to
efficiently implement remote queues on shared memory architectures.

We are also investigating using CCS to support a hybrid UPC/MPI program-
ming model. In such a hybrid programming environment, a process can perform
both UPC and MPI operations. By porting both the Berkeley UPC runtime and
MPICH2 over CCS, CCS would perform the communication operations for both
paradigms, allowing both paradigms to benefit from CCS’s high-performance
implementation.

In remote-memory model and GAS language middleware, when a process ac-
cesses a remote portion of a shared object distributed across different processes,
the virtual address of that portion at the remote process needs to be computed.
This operation can be simplified by allocating shared memory regions symmet-
rically across all processes; that is, the address of the local portion of the shared
object is the same at each process. This also improves the scalability of the
operation because less information needs to be kept for each remote memory re-
gion. We intend to address this issue, perhaps by including a special symmetric
allocation function.
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